
J Extra Corpor Technol. 2018;50:102–12
The Journal of ExtraCorporeal Technology

Integration of Electronic Perfusion Data for Perfusion Registries

Richard F. Newland, BSc, CCP (Aust); Robert A. Baker, PhD, CCP (Aust);
Chris A. Barratt, B AppSc(Comp)

Flinders Medical Centre and Flinders University, Bedford Park, Adelaide, South Australia, Australia

Abstract: Although the potential for the utilization of electronic
perfusion data (EPD) from proprietary software to facilitate the
understanding and improvement of cardiopulmonary bypass
(CPB) has been recognized, the generalizability of previous re-
ports of EPD integration are limited by superceded software or
lack of sufficient detail for reproducibility. To date, the Australian
andNewZealand Collaborative PerfusionRegistry (ANZCPR) is
the only multicentre perfusion registry to have reported the in-
tegration of EPD. The inclusion of EPD in analyses of the impact
of CPB on patient outcome is important in improving the

understanding of CPB practice. Perfusion registries play an im-
portant role in this process, and the incorporation of EPD into
perfusion registries could make a significant contribution toward
this objective. By sharing the methodology used to integrate EPD
from the CONNECT� software into the ANZCPR, our intent is
to diminish some of the barriers to adoption of EPD integration
into other perfusion registries, by providing an example of how
EPD integration may be achieved. Keywords: cardiopulmonary
bypass, database, registry, quality improvement. J Extra Corpor
Technol. 2018;50:102–12

The potential for the utilization of electronic perfusion
data (EPD) from proprietary software to facilitate the
understanding and improvement of cardiopulmonary by-
pass (CPB) has been recognized (1–3). We have previously
reported how the integration of EPD into perfusion reg-
istries can facilitate quality improvement through bench-
marking (4). To date, the Australian and New Zealand
Collaborative Perfusion Registry (ANZCPR) is the only
multicenter perfusion registry to have reported the in-
tegration of EPD. We reported a method for the auto-
mation of feedback of CPB quality parameters using the
Data Management System (DMS) software (Stockert,
Munich, Germany) (1); however, upgrades to this software
have ceased and it has been replaced by CONNECT�
(LivaNova PLC, London, UK). Furthermore, our previous
work did not describe in sufficient detail the methodology
used to transfer data from the DMS to our local registry.

These limitations may be contributing factors for the
nonintegration of EPD into other registries. This article
describes, in detail, the methods used to integrate EPD
from the CONNECT� software into the ANZCPR.

DESCRIPTION

Database Structure and Connection
Microsoft Access (MS Access) (Microsoft Corporation,

Redmond, WA) was chosen as the database platform to
integrate EPD based on the availability of the software at
participating ANZCPR hospitals and our experience using
MSAccess in the integration of EPD in our own institution.
CONNECT� uses a Microsoft Structured Query Lan-
guage (SQL) Server database platform, which can be
accessed via theMicrosoft SQL ServerManagement Studio
application. CONNECT� is installed as two separate
programs, namely, the Manager program, which has access
to all patient records, and the Recorder program, which is
used on the heart–lung machine for collection of individual
patient data during CPB. An open database connection
(ODBC) was used to create a connection between MS
Access and the CONNECT� Manager database. The
ANZCPR database structure consists of a Server database,

Received for publication September 26, 2017; accepted January 29, 2018.
Address correspondence to: Richard F. Newland, BSc, CCP (Aust),
Cardiac & Thoracic Surgical Unit, Level 6 Flinders Private Hospital,
Bedford Park, Adelaide 5042, South Australia, Australia. E-mail: richard.
newland@sa.gov.au
The senior author has stated that the authors have reported no material,
financial, or other relationship with any healthcare-related business or
other entity whose products or services are discussed in this article.

102

mailto:richard.newland@sa.gov.au
mailto:richard.newland@sa.gov.au


a Tables database and a Transfer database (Figure 1). The
clinical data-set for the ANZCPR is stored in the Tables
database. The Server database provides a front end to the
data-set and provides data entry, data export, report gen-
eration, and administrative functionality. The Transfer da-
tabase provides connection and transfer of EPD from
CONNECT� to the Tables database. Each participating
ANZCPRhospital has oneTables andTransfer database, but
may have multiple Server databases. In a local area network
environment, this design allows access to the ANZCPR from
either desktop or heart–lung machine computers by linking
each instance of the Server database to the Tables and
Transfer databases as linked MS Access tables. Using
MicrosoftWindows 7,ODBCconnectionswere created using
the ODBC Data Source Administrator window from the
Administrative Tools tab to link the CONNECT� tables to
the Transfer database.

Administrative rights may be required to achieve in-
tegration of EPD from CONNECT� or perform other
tasks as outlined in this document; therefore, consulta-
tion and assistance from Hospital IT departments are
recommended.

CONNECT�may either be installed on a local computer
or on a hospital-based SQL server. During installation the
authentication method is set as either integrated Windows
authentication or SQL server authentication. Using the
ODBCData Source Administrator window, a connection to
CONNECT� is configured using the SQL Server Native
Client 10.0 driver if the CONNECT� database is installed
on the local computer, or using the SQL Server driver if it is
installed on the hospital SQL server. To add a new data
source to a locally installed CONNECT� database, the
server name is localhost\sqlexpress. For SQL server con-
nection, the hospital server name is required. Authentication
using integrated Windows authentication or SQL server
authentication is selected as appropriate. The default da-
tabase is set to “ConnectManager.”AnODBC connection is
required for each computer on which the Server database is
used for EPD integration.

Linking Patient Records, Data Encryption and De-
Identification of Patient Data

Patient data records in ANZCPR are linked to the
corresponding patient data in CONNECT� by entering
the ANZCPR CPB procedure number into the ‘Case re-
cord’ field in CONNECT�. Each participating ANZCPR
hospital may choose their own CPB procedure numbering
system. Within the ANZCPR databases, the CPB pro-
cedure number is used as the primary key to link data
between tables. Patient identifying data is transferred only
to the participating ANZCPR hospital database, and are
not exported as part of the collaborative ANZCPR data
harvest as per the ethics requirements of the ANZCPR
(386.15, Southern Adelaide Clinical Human Research
Ethics Committee). Within the ANZCPR Server database,
the “demography” table is used to generate and store an
autonumber that serves as the unique registry ID for each
procedure. A separate table stores a unique hospital ID
value. When data is exported for the collaborative data
harvest, the hospital ID and the registry ID are exported to
create a combination of unique record identifiers without
patient identification. CONNECT� has the option of
encrypting the patient identifying data (default) which is set
as default in the CONNECT� Manager configuration file.
It is not possible to link records in CONNECT� for in-
tegration of EPD without decryption of patient identifi-
cation. Instructions for editing the configuration file can be
found in the CONNECT� service manual [(5), Section 4.2,
p. 62]. In the following command line, value5"true" is
changed to value5"false" to enable decryption and linkage
of patient data;

Encrypted:<add key5“Database.PatientData.Encryption.
Enabled” value5“true”/>

Decrypted:<add key5“Database.PatientData.Encryption.
Enabled” value5“false”/>.

Changing this command line will result in subsequent
records being stored with decrypted data. Records already
encrypted may be decrypted using the CONNECT�
Manager Configuration Studio application, as described in
the Service Manual [(5), Section 5.7.1, p. 123].

CONNECT™ EPD Structure
CONNECT� has a number of tables dedicated to

storage of various clinical data such as patient details, CPB
equipment and disposables, priming solutions, laboratory
biochemical data, cardioplegia delivery, procedural details,
heart–lung machine, and patient monitoring data. The
CONNECT� tables currently used for EPD transfer into
the ANZCPR and description of clinical data contained
therein are listed in Table 1. The structure of most of the
tables is in wide format, in which each different data
variable is stored in a separate column; however, for the
PerfusionStreamData table, the different variables from
the physiological monitor are stored together in one

Figure 1. ANZCPR database structure.

J Extra Corpor Technol. 2018;50:102–12

103ELECTRONIC PERFUSION DATA FOR PERFUSION REGISTRIES



column. To separate individual values, a specific process
was developed using Visual Basic for Applications (VBA),
the scripting language used within MS Access. The VBA
script development to convert the physiological data
stream into a data table in wide format was a key com-
ponent of the EPD integration into ANZCPR. The
intraoperative data in the CONNECT� tables is time-
stamped, allowing linkage of the physiological data to
the procedural and device data. The unique identifying
value for each record within the CONNECT� database is
stored in the “Guid” field in the Surgery table. This value is
stored in each table containing procedural data in the
“SurgeryGuid” field. In a relational database, this is known
as the primary key.

Initiation of the EPD Integration Process
Not all data from each table are transferred to the

ANZCPR. All heart–lung machine, cardioplegia, blood gas,
and physiological data are transferred; however, all other
ANZCPR data-set variables that can be obtained from the
CONNECT� EPD are populated through the use of VBA
programing contained within a module in the Transfer
database. To activate the transfer of the EPD, the user clicks
a button on the current patient record form in the Server
database (Figure 2). Clicking the button activates a VBA
subroutine that initially checks whether the Transfer data-
base is currently in use, to limit transaction to one record at
a time. If the Transfer database is ready to begin a new
transaction, the ANZCPR CPB procedure number of the
current record is stored in a transaction table in the Tables
database. A “transaction in progress” indicator is set and
remains in place until data processing and transfer is com-
plete. A configuration table is used to store the location of
the Transfer and Tables databases at each participating

hospital that can be referenced in the VBA subroutine. The
location of the Transfer database is determined, the data-
base is opened, and the EPD integration process is initiated.
In order for the VBA subroutine to reference the appro-
priate libraries (listed in Appendix 1), these should be ini-
tialized inMSAccess. TheVBA subroutine for initiating the
EPD process is reported in Appendix 2.

EPD Integration Process
The VBA subroutines and functions for the EPD in-

tegration process are contained within a module in the
Transfer database. The overall process is controlled from
a main subroutine that calls other subroutines and func-
tions to perform specific tasks. The sequence is executed as
follows; initially, the ANZCPR CPB procedure number
that was stored as part of the EPD initiation process is
determined. Using SQL the CPB start and stop times are
determined by searching for these data in the CPB event
data table (EventData).

The physiological data stream is converted into a data
table in wide format. This process activates a separate
subroutine for this purpose which

� defines the labels of the field names to search for in the
data stream.

� creates a record-set using an SQL query.
� evaluates each stream of data to extract the numerical

values for each field name.
� populates a table in the Transfer database with the data.

Because the physiological variables collected at each
participating hospital may be different, the subroutine must
include each CONNECT� label used, and these must also
be fields in the Transfer database table. Consistency in
labeling CONNECT� physiological variables should be

Table 1. CONNECT� tables used for transfer of data into the ANZCPR.

CONNECT Table Name Data Description Storage Frequency

CalculationData Calculated CPB data variables eg; cardiac index, systemic vascular resistance, etc. Every 20 seconds
CardioplegiaData Cardioplegia details; type, route, temperature, pressure, volume, etc. Per dose delivered
CoagulationData Coagulation test results; activated clotting time, prothrombin time, etc. Per sample
EventData CPB events recorded automatically (alarms, timers, etc.) and as entered by the Perfusionist Per event
GasFlowData Gas flow data recorded from the electronic blender; gas flows, FiO2, etc. Every 20 seconds
LaboratoryData Blood gas machine data (external to heart–lung machine) Per sample
MetabolicData Data for calculated oxygen delivery and carbon dioxide elimination Every 20 seconds
Patient Patient details; name, date of birth, gender, etc. Per patient
PerfusionData Heart lung machine data; pump flows, pressures, temperatures etc. Every 20 seconds
PerfusionStreamData Patient physiologic monitoring data; blood pressures, temperatures, heart rate, etc. Every 20 seconds
Surgery Primary key field (SurgeryGuid), and procedural data for each record; date of operation, case

record numbers (unique identifiers)
Per procedure

SurgeryAttributeValue Reference table used to categorize system values n/a
SurgeryCaseData Patient and procedural details; height, weight, urgency of procedure, blood type, etc. Per procedure
SurgeryEquipment CPB hardware, disposables, cannulae, implants, etc. Per procedure
SurgeryTeamMember Operating team member names Per procedure
SurgeryTeamRole Reference table used to categorize professions of team members n/a
SurgeryVolume Fluid and drug administration or loss values Per event
TimerData Timer values for the HLM (CPB, clamp, etc.) and for events defined as having timer values Per timer

J Extra Corpor Technol. 2018;50:102–12

104 R.F. NEWLAND ET AL.



maintained across participating hospitals. This table is
empty at the beginning of the EPD integration process. The
data from each individual patient record are then used to
generate calculated variables and then the complete
physiological data-set is appended to a registry table
(ConnectPerfusionData) for the storage of multiple patient
records. Generating calculated variables creates a single
record summary from the multiple data points collected
during the bypass period every 20–60 seconds for each
procedure. For example, the average cardiac index during
CPB is a single data value calculated from the patient’s
entire record. Storage of the entire physiological data
stream in a dedicated table in a wide format is an important
step in the integration of EPD with the CONNECT�
system, because it provides storage of the EPD in a format
that allows the generation of additional calculated registry
variables from the original data if required. The VBA script
for the conversion of the physiological data stream is re-
ported in Appendix 3.

EPD variables may be transferred directly from
CONNECT� data fields (e.g., CPB time); however, most
are calculated values during the CPB period, such as min-
imum hemoglobin, average cardiac index, duration that the

mean arterial pressure <50 mmHg. SQL queries are then
used to create record-sets along with VBA functions to
determine the EPD variables according to the ANZCPR
EPD data definitions. The main VBA subroutine with ex-
amples of how various types of EPD variables are generated
is reported in Appendix 4.

To make calculations on the data from electronic per-
fusion software, and to transfer certain data fields, some
conventions common to all participating sites are required;
these include “Rewarm” must be included as a comment
during the procedure for calculation of temperature pa-
rameters during rewarming. “Heparin” and quantity must
be entered to define heparin given during CPB. “Partial
bypass” can be commented to remove the period of partial
bypass from evaluation of cardiac index for quality in-
dicator calculation purposes. The timer labels “Bypass
Start” and “Bypass Stop”, and “X-Clamp On” and “X-
Clamp Off” must be used. In the coagulation table, the
sample type “1st ACT post hep”must be used to define the
1st activated clotting time measurement after heparin is
administered. Blood gas, hemoglobin, and glucose values
transferred from an external blood machine (intermittent
sampling) are used for blood gas and electrolyte quality

Figure 2. The current patient record form; to transfer data from CONNECT� to the ANZCPR, the user clicks the electronic import button.

J Extra Corpor Technol. 2018;50:102–12

105ELECTRONIC PERFUSION DATA FOR PERFUSION REGISTRIES



indicator data. Continuous blood gas data are used for
quantification of oxygen delivery if the Spectrum M4
monitor (Spectrum Medical, Gloucester, UK) is used. In
this case, arterial flow data is obtained from the M4. Be-
cause not all centers use continuous blood gas monitoring
with an arterial flow probe, the arterial flow rate from the
heart–lung machine is used for calculated cardiac index
parameters.

The values returned from each query or function are
updated to the appropriate field within the ANZCPR using
a specific subroutine reported in Appendix 5. Additional
miscellaneous subroutines utilized for the EPD process are
reported in Appendix 6. Once the physiological stream
data have been processed, the data in the Transfer database
table are deleted in preparation for the next patient record
to be processed. Finally, the transaction table is reset to
allow processing of the next EPD record.

Because CONNECT� does not allow deletion of event
data from the record, errors in manual data entry are
marked with “E” in the comment field for each event,
which allows exclusion of these events from analysis. A
configuration table in the ANZCPR allows for variation in
units of hemoglobin measurement, blood gas pressure
units, and data collection interval.

ANZCPR Database Elements for EPD Integration
The database tables and field names that are required

within the ANZCPR are listed in Table 2. The Tables
database has the following four tables that are used for
EPD integration:

� The Config table stores the data collection interval and
units of measurement for hemoglobin and blood gas
values.

� The ItemLocations table stores the location of the Ta-
bles and Transfer databases.

� The sysFlags table stores the current status of the EPD
integration process (whether a record is currently being
processed).

� The ConnectPerfusionData table stores the perfusion
stream data in wide format.

The Transfer database has one table (Perfusion-
StreamData) for temporary storage of the CONNECT�
perfusion data stream to facilitate conversion to wide
format. The perfusion data stream is stored permanently in
the ConnectPerfusionData table in the Tables database.
All other tables accessed by the Transfer database are
linked tables stored in the CONNECT� database or the
Tables database.

Table 2. ANZCPR table structure.

Transfer Database

Local Table Field Name Data Type Description

PerfusionStreamData ID AutoNumber Primary key
CONNECT perfusion stream data variables Number CONNECT perfusion stream data variables with one

field per variable

Linked Table Location

Config Tables database
ConnectPerfusionData Tables database
ItemLocations Tables database
sysFlags Tables database
ANZCPR data-set tables Tables database
CONNECT tables CONNECT EPD tables as listed in Table 1

Tables Database

Local Table Field Name Data Type Description

Config Datatype Number Data collection interval in seconds
Hbunits Number Numeric code for either g/dL or g/L
Gasunits Number Numeric code for either kPa or mmHg

ItemLocations Item Text Database name (TablesDb, TranferDb)
itemLoc Text Database file location & filename (e.g. c:\Tables.mdb)

sysFlags Flagname Text Set to ’IsImporting’ during EPD transfer
Flag Yes/No Set to ’Yes’ during EPD transfer
Procnum Text ANZCPR procedure number during EPD transfer

ConnectPerfusionData Procnum Text ANZCPR procedure number
Timestamp Date/Time Time of data storage in CONNECT
CONNECT perfusion stream data variables Number Storage of perfusion stream data in wide format. One

field for each variable
ANZCPR data-set tables Procnum Text ANZCPR procedure number

J Extra Corpor Technol. 2018;50:102–12

106 R.F. NEWLAND ET AL.



Currently, 88 of the 310 variables that comprise the
ANZCPR data-set are generated from EPD integration.
These variables are stored throughout each of theANZCPR
data-set tables. ANZCPR data-set variable definitions are
available on the ANZCPR website (www.anzcpr.org).

DISCUSSION

This article describes the process to integrate EPD from
the CONNECT� software into the ANZCPR. Although
this method specifically applies to integration of data from
the CONNECT� software into an MS Access database,
the principles of EPD integration can be generalized to
other perfusion data collection systems and registry data-
sets. These principles include: creation of registry variables
that can be populated with EPD either directly or derived
through calculation; procedural record data linkage be-
tween the registry and the EPD source database through
a unique identifier; development of a process to query the
EPD source database and update the registry variables;
and additionally, store the EPD in a format that allows
access generation of additional registry variables if re-
quired. We have reported the main VBA subroutine used
with examples of how various types of EPD variables are
generated in the ANZCPR. These examples can be gen-
eralized to other perfusion registry variables through al-
teration of the SQL query structure to suit the registry
variable definition and the EPD source.

An important consideration in the automated collection
of data is limiting the impact of erroneous data. For ex-
ample, continuous data from online blood gas monitoring
devices may be erroneous until calibration of a sample has
been performed. Similarly, errors in pressure or temper-
ature measurements may occur. Data processing can be
used to limit the influence of erroneous data through the
development of specific approaches to each issue, for ex-
ample, continuous blood gas data can be excluded from
analysis until the time that the first calibration sample is
received. Data that are clearly outside of normal physio-
logical ranges can also be excluded. Furthermore, in
a registry setting, some variation in the accuracy of certain
data variables may occur. For example; variation in the
accuracy of arterial outlet temperature may be influenced
by differences in accuracy of oxygenator temperature
probes. Variation in the accuracy of flow rates, used to
calculate cardiac index and oxygen delivery may be in-
troduced, either by using fixed arterial pump flow rates for
all values irrespective of flow through arterial-venous
shunts in the CPB circuit or because of the positioning
of ultrasonic flow probes in relation to shunts.

Although the potential for EPD to influence perfusion
practice has been demonstrated (1–3), the generalizability
of previous reports of EPD integration is limited by

superceded software or lack of sufficient detail for re-
producibility. The ANZCPR have used EPD to achieve
multicenter process improvement as an example of how
EPD can be used for generation of CPB quality indicators
(QI) (4) to facilitate continuous monitoring of QI pa-
rameters and benchmark local performance to other hos-
pitals. The inclusion of EPD in analyses of the impact of
CPB on patient outcome is important in improving the
understanding of CPB practice on outcome. Perfusion
registries play an important role in this process, and the
incorporation of EPD into perfusion registries could make
a significant contribution toward this objective. By sharing
the methodology used to integrate EPD from the CON-
NECT� software into the ANZCPR, our intent is to di-
minish some of the barriers to adoption of EPD integration
into other perfusion registries, by providing an example of
how EPD integration may be achieved.

REFERENCES

1. Newland RF, Baker RA, Stanley R. Electronic data processing: The
pathway to automated quality control of cardiopulmonary bypass.
J Extra Corpor Technol. 2006;38:139–43.

2. Baker RA, NewlandRF. Continuous quality improvement of perfusion
practice: The role of the electronic data collection and statistical control
charts. Perfusion. 2008;23:7–16.

3. Stammers AH, Trowbridge CC, Pezzuto J, et al. Perfusion quality
improvement and the reduction of clinical variability. J Extra Corpor
Technol. 2009;41:48–58.

4. Baker RA, Newland RF, Fenton C, et al. Perfusion downunder col-
laboration. Developing a benchmarking process in perfusion: A report
of the perfusion downunder collaboration. J Extra Corpor Technol.
2012;44:26–33.

5. CONNECT� Service Instructions.Version 01/2014-SM-45-90-14.02
ENG.

APPENDIX 1

The following libraries should be initialized inMSAccess
through the Microsoft VBA editing window; VBA

MS Access 14.0 object library
Microsoft DAO 3.6 object library
OLE automation
Microsoft VBA extensibility 5.3
Microsoft scripting runtime
Microsoft activeX data objects 2.8 library
Microsoft activeX data objects recordset 2.8 library

APPENDIX 2

VBA subroutine for activating EPD process for current
patient record in ANZCPR.

Note: This process is activated on clicking a button on the
database form, stored in the server database.

Private Sub cmd_Import_CONNECT_Click()
Dim AccessApp As Object

J Extra Corpor Technol. 2018;50:102–12

107ELECTRONIC PERFUSION DATA FOR PERFUSION REGISTRIES

http://www.anzcpr.org


Dim curProcnum As String
Dim con As ADODB.Connection
Dim fInTrans As Boolean 'flag for determining if we are

currently in a transaction or not
‘This checks to see if the transfer database is currently

in use
If IsImporting Then
MsgBox "Error, import already in progress, exiting",

vbOKOnly 1 vbCritical, "Error"
Exit Sub
End If
Set AccessApp 5 CreateObject("Access.Application")
If SysCmd(acSysCmdAccessVer) >5 11 Then
Call AutomateSecurity(AccessApp)
End If
If MsgBox("Starting transfer", vbOKCancel) 5 1 Then
SysCmd acSysCmdInitMeter, " Data Transferring ", 10
curProcnum 5 Me.Procnum
'preset the transaction flag
fInTrans 5 False
Set con 5 CurrentProject.Connection
' Start of transaction.
con.BeginTrans
fInTrans 5 True
con.Execute ("UPDATE sysFlags SET sysFlags.

Procnum 5 '" & curProcnum & "' WHERE sysFlags.
FlagName5'Importing'")

con.CommitTrans
fInTrans 5 False
AccessApp.OpenCurrentDatabase DLookup("[itemloc]",

"[itemlocations]", "[item] 5 'TransferDb'")
SysCmd acSysCmdUpdateMeter, 3
AccessApp.Run "Transfer_CONNECT", UserName
SysCmd acSysCmdUpdateMeter, 6
AccessApp.Quit
Set AccessApp 5 Nothing
SysCmd acSysCmdUpdateMeter, 10
MsgBox "Finished Transfer"
SysCmd acSysCmdRemoveMeter
Me.Refresh
Else
End If
End Sub

APPENDIX 3

VBA script to extract CONNECT� perfusion data
stream

Note: This script is stored in the Transfer database.
Private Sub Extract_StreamData(theGUID As String,

bpStart As Date, bpEnd As Date, pnum As String)
Dim FieldNameArray As Variant
FieldNameArray 5 Array("HeartRate", "StAlgorithm1",

"StAlgorithm2", "StAlgorithm3", _

"ArtPress_sys", "ArtPress_dia", "MAP", "CVP", "Naso-
PharynigialTemp") ‘Note: this list should include all variable
names in the PerfusionStreamData

Dim NumFields As Integer
NumFields 5 UBound(FieldNameArray) 1 1
Dim SQLQuery As String
SQLQuery5 "SELECT s.TimeStamp, s.StreamData, d.

Bsa " & _
"FROMdbo_PerfusionStreamData s left join dbo_Surgery

CaseData d on d.SurgeryGuid 5 s.SurgeryGuid " & _
"WHERE s.SurgeryGuid5 '"& theGUID&"' and "& _
"s.Timestamp >5 #" & Format(bpStart, "yyyy-mm-dd

hh:nn:ss") & "# and" & _
"s.Timestamp <5 #" & Format(bpEnd, "yyyy-mm-dd

hh:nn:ss") & "# " & _
"ORDER BY s.TimeStamp; "
OutputLine ("Processing Perfusion stream data")
Dim stDataRset As DAO.Recordset
Dim stDataTable As Recordset
Set stDataRset5CurrentDb.OpenRecordset(SQLQuery)
stDataRset.MoveFirst
Set stDataTable 5 CurrentDb.OpenRecordset("Perfu-

sionStreamData", dbOpenTable)
Do While Not stDataRset.EOF ' read each record
stDataTable.AddNew
stDataTable("ProcNum").Value 5 pnum
stDataTable("Timestamp").Value5 stDataRset!TimeStamp
Dim fcnt As Integer
For fcnt 5 0 To (NumFields - 1) ' parse out each of the

fields and put in table
Dim fname As String
fname 5 FieldNameArray(fcnt)
If (GetFieldValue(fname, stDataRset!StreamData)

<> "") Then
Dim fval As Variant
fval5CDbl(GetFieldValue(fname, stDataRset!StreamData))
If (fname5 "ArtTemp") Then ' ensure values are within

a valid range
If (fval < 5) Or (fval >5 100) Then
fval 5 Null
End If
End If
If (fname 5 "Hb") Then ' ensure values are within

a valid range
If (fval < 1) Or (fval >5 100) Then
fval 5 Null
End If
End If
If fname 5 "pCO2Art_37" Then ' as above
If (fval < 5) Or (fval >5 120) Then
fval 5 Null
End If
End If
If Not IsNull(fval) Then ‘ if a value was found then

J Extra Corpor Technol. 2018;50:102–12

108 R.F. NEWLAND ET AL.



stDataTable(fname).Value 5 fval ‘store it in the per-
fusion data table field

End If
End If
Next fcnt
stDataTable.Update
stDataRset.MoveNext
Loop
End Sub
‘This function is to extract the field names from the

perfusion data stream
‘The string containing the fields and their values is for-

matted such that an ASCII 30 character ‘(record separator)
surrounds each record, within which an ASCII 31 character
(field separator) ‘separates the field name from its value

Public Function GetFieldValue(fldName As String,
fldStr As String) As String

Dim namePos As Integer
Dim valPos As Integer
Dim valLen As Integer
Dim nextSep As Integer
Dim fldVal As String
namePos 5 InStr(1, fldStr, fldName 1 Chr(31))
If IsNull(namePos) Or (namePos <5 0) Then
GetFieldValue 5 ""
Else
valPos 5 namePos 1 Len(fldName) 1 1
nextSep 5 InStr(valPos, fldStr, Chr(30))
valLen 5 nextSep - valPos
fldVal 5 Mid(fldStr, valPos, valLen)
GetFieldValue 5 fldVal
End If
End Function

APPENDIX 4

VBA subroutine for the EPD integration process in
ANZCPR.

Note: This script is stored in the Transfer database.
Public Sub Transfer_CONNECT(logusernameAs String)
Dim logProcnum As String
'lookup current CPB procedure number:
logProcnum 5 DLookup("Procnum", "sysFlags")
'check that the database is not currently processing data:
If IsImporting Then
MsgBox "Error, import already in progress, exiting",

vbOKOnly 1 vbCritical, "Error"
Exit Sub
Else
CurrentDb.Execute ("UPDATE sysFlags SET sysFlags.

Flag 5 True WHERE sysFlags.Flagname5'Importing'")
End If
'retrieve key values that we will need in queries:
Dim procGuid As String

Dim patientGuid As String
Dim surgDate As Date
'run subroutine to retrive the values:
Call GetSurgDetails(logProcnum, procGuid, patient-

Guid, surgDate)
If procGuid 5 "" Then
MsgBox "Procnum "& logProcnum& " cannot be found

in CONNECT database - no update done."
Exit Sub
End If
OutputLine ("GUID 5 " & procGuid)
' define CPB start and stop times
Dim bySQL As String
Dim byRSet As Recordset
Dim bypassStart As Date ' get time of first bypass start
Dim nullBypassStart As Boolean
extraData.bypassStartTime 5 Null
nullBypassStart 5 True
bySQL 5 "select min(EventTime) as StartTime From

dbo_EventData " & _
"where SurgeryGuid 5 '" & procGuid & "' and " & _
" ((CommentText is null) or (CommentText <> 'E'))

and " & _
" ((SourceLabel5 'Bypass' and EventLabel5 'Start') or

(SourceLabel 5 'Bypass Start'))"
Set byRSet 5 CurrentDb.OpenRecordset(bySQL)
If Not byRSet.EOF Then
If Not IsNull(byRSet![StartTime]) Then
bypassStart 5 byRSet![StartTime]
extraData.bypassStartTime 5 byRSet![StartTime]
nullBypassStart 5 False
End If
End If
byRSet.Close
Dim bypassEnd As Date ' get time that last bypass ends
Dim nullBypassEnd As Boolean
nullBypassEnd 5 True
bySQL 5 "select max(EventTime) as EndTime From

dbo_EventData " & _
"where SurgeryGuid 5 '" & procGuid & "' and " & _
" ((CommentText is null) or (CommentText <> 'E'))

and " & _
" ((SourceLabel5 'Bypass' and EventLabel5 'Stop') or

(SourceLabel 5 'Bypass End') or (SourceLabel 5 'Bypass
Stop'))"

Set byRSet 5 CurrentDb.OpenRecordset(bySQL)
If Not byRSet.EOF Then
If Not IsNull(byRSet![endTime]) Then
bypassEnd 5 byRSet!endTime
nullBypassEnd 5 False
End If
End If
byRSet.Close
' clear the perfusion stream data table from last import

J Extra Corpor Technol. 2018;50:102–12

109ELECTRONIC PERFUSION DATA FOR PERFUSION REGISTRIES



CurrentDb.Execute "delete * from [PerfusionStreamData];"
' now populate table
CallExtract_StreamData(procGuid, bypassStart, bypassEnd,

logProcnum)
'This section contains examples of how to generate

calculated EPD variables
'Here is an example of retrograde autologous prime

volume
'The comment RAP is entered as a volume comment and

the volume amount is retrieved
Dim RapVol As Integer
RapVol 5 0
bySQL 5 "select Value as RapValue From dbo_

EventData " & _
"where SurgeryGuid 5 '" & procGuid & "' and " & _
" ((CommentText is null) or (CommentText <> 'E'))

and " & _
" (SourceLabel5 'RAP') and SourceType5 'Volume -' "
Set byRSet 5 CurrentDb.OpenRecordset(bySQL)
If Not byRSet.EOF Then
RapVol 5 Nz(byRSet!RapValue, 0)
End If
byRSet.Close
'Here are examples of how to extract minimum and

maximum blood gas and electrolyte data, 'incorporating
different units of hemoglobin and blood gas pressure. Also
a binary

'quality indicator is set for having a blood glucose <4
or > 10

Dim minHb As Single
Dim maxHb As Single
Dim minCO2 As Single
Dim maxCO2 As Single
Dim minGlucose As Single
Dim maxGlucose As Single
Dim Gluc As Integer
OutputLine ("Extracting Laboratory max/mins")
labSQL5 "selectMin(Hb_Ext) asMinHb,Max(Hb_Ext)

as MaxHb, " & _
"Min(pCO2Art_37_ext) asMinCO2,Max(pCO2Art_37_ext)

as MaxCO2, " & _
" Min(Glucose_ext) as MinGlu, Max(Glucose_ext) as

MaxGlu " & _
" from dbo_LaboratoryData " & _
" where SurgeryGuid 5 '" & procGuid & "' and " & _
" TimeStamp >5 #" & Format(bypassStart, "yyyy-mm-

dd hh:mm:ss") & "# and " & _
" TimeStamp <5 #" & Format(bypassEnd, "yyyy-mm-

dd hh:mm:ss") & "#"
Set labRSet 5 CurrentDb.OpenRecordset(labSQL)
If Not labRSet.EOF Then
If Nz(DLookup("Hbunits", "Config")) 5 1 Then
minHb 5 labRSet!minHb * 10
maxHb 5 labRSet!maxHb * 10

ElseIf Nz(DLookup("Hbunits", "Config")) 5 2 Then
minHb 5 labRSet!minHb
maxHb 5 labRSet!maxHb
Else
MsgBox ("Bad config value for HbUnits")
Exit Sub
End If
If Nz(DLookup("Gasunits", "Config")) 5 1 Then
minCO2 5 labRSet!minCO2
maxCO2 5 labRSet!maxCO2
ElseIf Nz(DLookup("Hbunits", "Config")) 5 2 Then
minCO2 5 labRSet!minCO2 * 7.5
maxCO2 5 labRSet!maxCO2 * 7.5
Else
MsgBox ("Bad config value for HbUnits")
Exit Sub
End If
minGlucose 5 labRSet!minGlu
maxGlucose 5 labRSet!maxGlu
If minGlucose < 4 Or maxGlucose > 10 Then
Gluc 5 1
Else
Gluc 5 2
End If
End If
labRSet.Close
'Here are examples of how to extract min andmax values

from the perfusion stream data table
Dim perfSQL As String
Dim perfRSet As Recordset
OutputLine ("Extracting Perfusion min/max/avgs")
perfSQL5 "SELECTMin([NasoPharynigialTemp]) AS

[MinOfNaso temp], " & _
"Max([NasoPharynigialTemp]) AS [MaxOfNaso temp],

" & _
"Max([ArtTemp]) AS [MaxOfArt temp], " & _
"Min([ArtTemp]) As [MinOfArt temp], " & _
"Min(Nz([MAP])) AS [MinOfArt P], " & _
"Avg([MAP]) AS [AvgOfArt P] " & _
"FROM PerfusionStreamData " & _
"WHERE ProcNum 5 '" & logProcnum & "'"
Dim Nasomin As Single
Dim Nasomax As Single
Dim MAPavg As Double
Dim Artmax As Single
Dim Artmin As Single
Set perfRSet 5 CurrentDb.OpenRecordset(perfSQL)
If Not perfRSet.EOF Then
Nasomin 5 perfRSet![MinOfNaso temp]
Nasomax 5 perfRSet![MaxOfNaso temp]
MAPavg 5 perfRSet![AvgOfArt P]
Artmax 5 perfRSet![MaxOfArt temp]
Artmin 5 perfRSet![MinOfArt temp]
End If

J Extra Corpor Technol. 2018;50:102–12

110 R.F. NEWLAND ET AL.



perfRSet.Close
'Here is an example of how to extract an average value

from the perfusion data table
perfSQL 5 "SELECT Avg([ArtFlow]) AS [AvgOfArt

Flow] " & _
"FROM dbo_PerfusionData " & _
"WHERE SurgeryGuid5 '" & procGuid & "' and " & _
" TimeStamp >5 #" & Format(bypassStart, "yyyy-mm-

dd hh:mm:ss") & "# and " & _
" TimeStamp <5 #" & Format(bypassEnd, "yyyy-mm-

dd hh:mm:ss") & "#"
Dim Flowavg As Double
Set perfRSet 5 CurrentDb.OpenRecordset(perfSQL)
If Not perfRSet.EOF Then
Flowavg 5 perfRSet![AvgOfArt Flow]
End If
perfRSet.Close
'To update the values returned from the queries into

a registry table, use this syntax, 'according to the registry
table and field name; 'eg updSQL 5 "UPDATE [Registry
table name] SET [Registry field name]5 " & [vba variable
name] & "

Dim updSQL As String
updSQL 5 "UPDATE ANZCPR_Perfusion SET

Hbmin 5 " & minHb & ", " & _
"Hbmax 5 " & maxHb & ", " & _
"Nasomin 5 " & Nasomin & ", " & _
"Nasomax 5 " & Nasomax & ", " & _
"Artmax 5 " & Artmax & ", " & _
"Artmin 5 " & Artmin & ", " & _
"MAPavg 5 " & MAPavg & ", " & _
"Flowavg 5 " & Flowavg & ", " & _
"Glucmin 5 " & minGlucose & ", " & _
"Glucmax 5 " & maxGlucose & _
" WHERE Procnum 5 '" & logProcnum & "'"
doUpdate (updSQL)
'Here is an example of how to calculate cumulative time

variables and then taking into account the data collection
interval

'This is the cummulative time that the MAP was <
40 mmHg; Dim artP40 As Single

countSQL 5 "SELECT COUNT(TimeStamp) As The-
Count from PerfusionStreamData where (MAP>5 30) and
(MAP < 40) and procnum 5 '" & logProcnum & "'"

artP405 getCount(countSQL) ' Note: getCount is a function
decribed later on

'This is the cummulative time that the arterial outlet
temperature was >37 degrees; Dim ATemp37 As Single

countSQL 5 "SELECT COUNT(Timestamp) As
TheCount from PerfusionStreamData where (ArtTemp >
37) " & " and procnum 5 '" & logProcnum & "'"

ATemp37 5 getCount(countSQL)
'Determining the data collection interval from the con-

figuration table; Dim BDQCfactor As String

If Nz(DLookup("Datatype", "Config")) 5 2 Then
BDQCfactor 5 "0.5"
Else
OutputLine ("BD - QC Update 20 sec")
BDQCfactor 5 "0.33333333"
End If
Dim countSQL As String
'Updating the data taking into account the data collec-

tion interval; updSQL 5 "UPDATE ANZCPR_PerfQC
set artP40 5 " & artP40 & "*" & BDQCfactor & ", " & _

"[ATemp>37] 5 " & ATemp37 & "*" & BDQCfactor
& _

" WHERE Procnum 5 '" & logProcnum & "'"
doUpdate (updSQL)
'append physiological stream data to multiple record

table
If IsNull(DLookup("[ProcNum]", "ConnectPerfusionData",

"[ProcNum] 5 '" 1 logProcnum 1 "'")) Then
CurrentDb.Execute "Append Stream data"
End If
'now clear out the temporary stream data table and reset

the transaction table
CurrentDb.Execute "delete * from [PerfusionStreamData];"
Dim MySQL As String
CurrentDb.Execute ("UPDATE sysFlags SET sys

Flags.Procnum 5 Null WHERE sysFlags.FlagName5
'Importing'")

CurrentDb.Execute ("UPDATE sysFlags SET sys-
Flags.Flag 5 false WHERE sysFlags.FlagName5
'Importing'")

MsgBox "Transfer complete"
Exit Sub
End Sub

APPENDIX 5

VBA subroutine to update values returned in the SQL
queries to the database fields

Note: This script is stored in the Transfer database.
‘This subroutine is used to update values returned in the

SQL queries to the database fields
Public Sub doUpdate(SQLtoUse As String)
Dim updTable As String
If Len(SQLtoUse) > 50 Then
Dim wordArray() As String
wordArray() 5 Split(SQLtoUse)
Select Case wordArray(0)
Case "UPDATE"
updTable 5 wordArray(0) 1 " " 1 wordArray(1) 1

" ..."
Case "INSERT"
updTable 5 wordArray(0) 1 " " 1 wordArray(1) 1 "

" 1 wordArray(2) 1 " ..."
End Select

J Extra Corpor Technol. 2018;50:102–12

111ELECTRONIC PERFUSION DATA FOR PERFUSION REGISTRIES



End If
With CurrentDb
.Execute SQLtoUse
If .RecordsAffected <5 0 Then
Call OutputLine("Update was not successful: " &

SQLtoUse, True, updTable)
End If
End With
End Sub

APPENDIX 6

Miscellaneous specific VBA subroutines
Note: These scripts are stored in the Transfer database.
'this function finds the Connect unique record identifier

for the corresponding ANZCPR unique procedure iden-
tifier, together with the date of surgery

Public Sub GetSurgDetails(Procnum As String, ByRef
procGuid As String, ByRef patientGuid As String, ByRef
surgDate As Date)

Dim guidSQL As String
Dim guidRset As Recordset
guidSQL 5 "Select * from dbo_Surgery where

CaseNumberDec 5 '" & Procnum & "'"
Set guidRset 5 CurrentDb.OpenRecordset(guidSQL)
If guidRset.RecordCount > 0 Then
procGuid 5 Mid(StringFromGUID(guidRset!Guid), 8,

36) ' get the Connect GUID for this procedure and chop off
extraneous characters added by routine

patientGuid 5 Mid(StringFromGUID(guidRset!patient-
Guid), 8, 36) ' The CONNECT identifier for the patient

surgDate 5 guidRset!SurgeryDate

Else
Call OutputLine("Error finding procnum " & Procnum

& " in CONNECT database", True)
procGuid 5 ""
End If
guidRset.Close
End Sub
'This function determines if the transfer database is

currently in use
Public Function IsImporting() As Boolean
If DLookup("[Flag]", "[sysFlags]", "[FlagName]5

'Importing'") 5 True Then
IsImporting 5 True
Else
IsImporting 5 False
End If
End Function
‘This function is used to return the number of records for

a certain criteria (e.g., count number of times pressure<40)
Private Function getCount(SQLtoUseAsString)As Integer
Dim cntRset As Recordset
Dim retcount As Integer
Set cntRset 5 CurrentDb.OpenRecordset(SQLtoUse)
If cntRset.RecordCount > 0 Then
retcount 5 cntRset!theCount
Else
retcount 5 0
End If
cntRset.Close
Set cntRset 5 Nothing
getCount 5 retcount
End Function

J Extra Corpor Technol. 2018;50:102–12

112 R.F. NEWLAND ET AL.


	Integration of Electronic Perfusion Data for Perfusion Registries
	DESCRIPTION
	Database Structure and Connection
	Linking Patient Records, Data Encryption and De-Identification of Patient Data
	CONNECT™ EPD Structure
	Initiation of the EPD Integration Process
	EPD Integration Process
	ANZCPR Database Elements for EPD Integration

	DISCUSSION
	REFERENCES
	APPENDIX 1
	APPENDIX 2
	APPENDIX 3
	APPENDIX 4
	APPENDIX 5
	APPENDIX 6


